DNA quality assessment – what can we learn from our neighbours

Dr. med. Verena Haselmann, MD PhD
Universitätsmedizin Mannheim
Institute of Clinical Chemistry
1. Introduction

2. Molecular genetic EQA schemes of the RfB

3. FV

4. Conclusion

5. Future Development
Introduction

- External quality assessment schemes – definition and aim
- Unique characteristics of molecular genetic diagnostics to be considered
- Database concerning EQA provider: www.europgentest.org/

<table>
<thead>
<tr>
<th>Assay</th>
<th>EQA Provider</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cytochrom p450 2B6*6</td>
<td>RfB, INSTAND</td>
</tr>
<tr>
<td>Cytochrom p450 2C19</td>
<td>RfB, ECAT</td>
</tr>
<tr>
<td>Cytochrom p450 2C8 (CYP2C8) Gene: K399R</td>
<td>RfB, INSTAND</td>
</tr>
<tr>
<td>Cytochrom p450 2C9</td>
<td>RfB, INSTAND</td>
</tr>
<tr>
<td>Cytochrom p450 2D6</td>
<td>RfB, INSTAND</td>
</tr>
<tr>
<td>Cytochrom p450 3A4*22</td>
<td>RfB, INSTAND</td>
</tr>
<tr>
<td>Cytochrom p450 3A5*3</td>
<td>RfB, INSTAND</td>
</tr>
<tr>
<td>Dihydropyrimidin-Dehydrogenase (DPD) Gene: Exon-skipping mutation IVS14 G>A +1</td>
<td>RfB, ECAT</td>
</tr>
<tr>
<td>DNA Isolation</td>
<td>RfB, ECAT</td>
</tr>
<tr>
<td>DNA Sequencing</td>
<td>RfB, CAP, ECAT, EMOQ, EQUALIS</td>
</tr>
</tbody>
</table>
1. Introduction

2. Molecular genetic EQA schemes of the RfB

3. FV

4. Conclusion

5. Future Development
Molecular genetic proficiency testing of the RfB

Scope:

- DI – DNA Isolation
- FV – Genotyping
- SQ – Sequencing
DI-EQA

- Distribution twice a year by the „Referenzinstitut für Bioanalytik“ (www.dgkl-rfb.de)
- Offered since 2009
- Two different samples each á 500μl of human whole blood are provided
- Following parameters are requested:
 - Method used for DNA-isolation
 - DNA-concentration
 - Purification of the isolated DNA
- Following analytes can be determined:
 - FV-Leiden, FV-Hong-Kong, FV-Cambridge
 - Since 2012 MTHFR 677, FII, HFE
DI-EQA

1. FV-Leiden (ARG506GLN)
 - Allele: R:R506, Q:Q506
 - Probe/Sample
 - R/R: 01, 1; 02, 41
 - R/Q: 01, 1; 02, 1
 - Q/Q: 01, 39

2. FV-H1299R (HIS1299ARG)
 - Allele: H:H1299, R:R1299
 - Probe/Sample
 - H/H: 01, 5; 02, 6
 - H/R: 01, 6; 02, 1
 - R/R: 01, 1; 02, 1

3. FV-Cambridge (ARG306THR)
 - Allele: R:R303, T:T306
 - Probe/Sample
 - R/R: 01, 3; 02, 3
 - R/T: 01, 3; 02, 3
 - T/T: 01, 3; 02, 3

4. FV-Hong-Kong (ARG306GLY)
 - Allele: R:R306, G:G306
 - Probe/Sample
 - R/R: 01, 3; 02, 3
 - R/G: 01, 3; 02, 3

- Your results are marked with a green dot -

Used methods:
automated: 26
manually: 16

Quotient 260/280 - Sample A
Quotient 260/280 - Sample B

amount of DNA added in PCR - Sample A
amount of DNA added in PCR - Sample B

DNA isolated from 1μl blood
SQ-EQA

- Distribution twice a year by the „Referenzinstitut für Bioanalytik“ (www.dgkl-rfb.de)
- Offered since 2006
- Two different PCR-products as well as the sequencing primers are provided
- Separated into a technical and medical part
- Technical part:
 - Both samples have to be analyzed
 - The raw data has to be edited
- Medical part:
 - The patients history as well as other laboratory findings are provided
 - Only one sample has to be evaluated
SQ-EQA

DGKL EQA for DNA-sequencing
- Based on EQUAL-Seq und published reporting formats

Agenda

1. Introduction

2. Molecular genetic EQA schemes of the RfB

3. FV

4. Conclusion

5. Future Development
• Distribution twice a year by the „Referenzinstitut für Bioanalytik“ (www.dgkl-rfb.de)
• Offered since 2002
• Samples containing 500 to 1000 ng of lyophilized gDNA
• Since 2014 nine different sets (A-I) are provided
 • Each set is composed of two different samples
 • An average of four different analytes are provided per set
 • For sample validation two different methods are used
FV-EQA: scope

Number of participating laboratories

X 2.5
FV-EQA: scope

<table>
<thead>
<tr>
<th>Countries</th>
<th>Number of Participants</th>
<th>Number of Participants (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Germany</td>
<td>131</td>
<td>35.1</td>
</tr>
<tr>
<td>Austria</td>
<td>34</td>
<td>9.1</td>
</tr>
<tr>
<td>Swiss</td>
<td>28</td>
<td>7.5</td>
</tr>
<tr>
<td>France</td>
<td>39</td>
<td>10.5</td>
</tr>
<tr>
<td>Benelux</td>
<td>39</td>
<td>10.5</td>
</tr>
<tr>
<td>Other Europe</td>
<td>71</td>
<td>19.0</td>
</tr>
<tr>
<td>North America</td>
<td>15</td>
<td>4.0</td>
</tr>
<tr>
<td>South America</td>
<td>6</td>
<td>1.6</td>
</tr>
<tr>
<td>Oceania</td>
<td>9</td>
<td>2.4</td>
</tr>
<tr>
<td>Middle East</td>
<td>1</td>
<td>0.3</td>
</tr>
</tbody>
</table>

Increment of participating laboratories in the last two EQAs compared to 2002
FV-EQA: scope

Number of analytes offered
FV-EQA: scope

Set A: FV-Leiden, Prothrombin, MTHFR (C677T, A1298C), PAI-I 4g5g

Set B: FXIII V34L, GPIIIa, βFib g-455a, VKORC1 (g-1639a/c1173t), FXII c-46t, FV H1299R

Set C: a1 PI, Apo E, Apo B100, ACE, CETP

Set D: TPMT, Cyp2C19 *1/*2/*17, Cyp2C8 (K399R), Cyp2C9 *2/*3, UGT1a1 (*28), DPD Exon 14 skipping, BCHE A/K

Set E: ALDO B (149/174/334), HFE (H63D, C282Y, S65C), LCT c-13910t, NOD2 (R702W, G908R, L1007fins C)

Set F: M. Wilson ATP7B-C3207 A, FSAP (Marburg-I), ITGA2 Gplalla C807T, Col1A1 SP1, VDR (BsmI, Apal, TaqI)

Set G: K-Ras: Codon 12/13/61, BRAF V600E

Set H: HLA-B27

Set I: Cyp2D6
FV-EQA: scope

Number of genotypes determined
FV-EQA: scope

Number of genotypes determined per analyte
FV-EQA: methods

- TaqMan-probes; 2043; 10%
- AS-amplification; 1711; 9%
- reverse Dot-Blot; 1966; 10%
- RFLP; 2040; 10%
- DNA Sequencing; 1657; 8%
- other; 3153; 16%
- Pyrosequencing; 872; 5%
- home-brew method; 453; 2%
- FRET-probes; 5640; 29%
- Chip-Analysis; 135; 1%
- Molecular Beacons; 28; 0%
FV-EQA: error rate

Mean error rate (%)
FV-EQA: error rate

Mean error rate for each analyte
FV-EQA: error rate

Error rate depending on method used

- **RQ-P**
 - Number of errors: 57
 - Number of genotypings: 2384

- **AS-amplification**
 - Number of errors: 24
 - Number of genotypings: 2148

- **reverse Dot-Blot**
 - Number of errors: 39
 - Number of genotypings: 2408

- **FRET-probes**
 - Number of errors: 93
 - Number of genotypings: 6708

- **TaqMan-probes**
 - Number of errors: 29
 - Number of genotypings: 2906

- **Molecular Beacons**
 - Number of errors: 0
 - Number of genotypings: 62

- **other**
 - Number of errors: 35
 - Number of genotypings: 2008

- **DNA Sequencing**
 - Number of errors: 30
 - Number of genotypings: 2682

- **Chip Analysis**
 - Number of errors: 17
 - Number of genotypings: 430

- **Pyrosequencing**
 - Number of errors: 6
 - Number of genotypings: 1212

- **home-brew method**
 - Number of errors: 15
 - Number of genotypings: 712
<table>
<thead>
<tr>
<th>rs Number</th>
<th>Analyte</th>
<th>FV-EQA: error rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>rs6647</td>
<td>a1-Proteinase-Inhibitor</td>
<td>0/0.82</td>
</tr>
<tr>
<td>rs25758</td>
<td>ACHE</td>
<td>0/2/7.28</td>
</tr>
<tr>
<td>rs18921947</td>
<td>Haselmann et al., submitted to Clinical Chemistry</td>
<td></td>
</tr>
<tr>
<td>rs1799752</td>
<td>ATP2B-C3</td>
<td>0/0.5</td>
</tr>
<tr>
<td>rs229158</td>
<td>Apoe</td>
<td>0/3/1.45</td>
</tr>
<tr>
<td>rs6151636</td>
<td>BRCA</td>
<td>0/0.5</td>
</tr>
<tr>
<td>rs1799807</td>
<td>BRM</td>
<td>0/0.5</td>
</tr>
<tr>
<td>rs12148002</td>
<td>BRM</td>
<td>0/0.5</td>
</tr>
<tr>
<td>rs708273</td>
<td>BRMS</td>
<td>0/0.5</td>
</tr>
<tr>
<td>rs2444827s</td>
<td>CYP2C19</td>
<td>0/0.5</td>
</tr>
<tr>
<td>rs3728003C</td>
<td>CYP2C9</td>
<td>0/0.5</td>
</tr>
<tr>
<td>rs1799953C</td>
<td>CYP2C19</td>
<td>0/0.5</td>
</tr>
<tr>
<td>rs1987290</td>
<td>DPD Enzyme skip</td>
<td>0/0.5</td>
</tr>
<tr>
<td>rs985</td>
<td>F XIII</td>
<td>0/0.5</td>
</tr>
<tr>
<td>rs179963</td>
<td>Faktor II</td>
<td>0/0.5</td>
</tr>
<tr>
<td>rs6025</td>
<td>Faktor V</td>
<td>0/0.5</td>
</tr>
<tr>
<td>rs1800595</td>
<td>FSH</td>
<td>0/0.5</td>
</tr>
<tr>
<td>rs1801020</td>
<td>FMII</td>
<td>0/0.5</td>
</tr>
<tr>
<td>rs9128</td>
<td>GP III</td>
<td>0/0.5</td>
</tr>
<tr>
<td>rs1799945s</td>
<td>HFE</td>
<td>0/0.5</td>
</tr>
<tr>
<td>rs1800770</td>
<td>HLA-A</td>
<td>0/0.5</td>
</tr>
<tr>
<td>rs13266343</td>
<td>T6A2</td>
<td>0/0.5</td>
</tr>
<tr>
<td>rs22191330,</td>
<td>UMR</td>
<td>0/0.5</td>
</tr>
<tr>
<td>rs22191332</td>
<td>UMR</td>
<td>0/0.5</td>
</tr>
<tr>
<td>rs22191333</td>
<td>UMR</td>
<td>0/0.5</td>
</tr>
<tr>
<td>rs22191339</td>
<td>UMR</td>
<td>0/0.5</td>
</tr>
<tr>
<td>rs12445444</td>
<td>UMR</td>
<td>0/0.5</td>
</tr>
<tr>
<td>rs12113238</td>
<td>UMR</td>
<td>0/0.5</td>
</tr>
<tr>
<td>rs17813420</td>
<td>UMR</td>
<td>0/0.5</td>
</tr>
<tr>
<td>rs12180313,</td>
<td>UMR</td>
<td>0/0.5</td>
</tr>
<tr>
<td>rs12180314,</td>
<td>UMR</td>
<td>0/0.5</td>
</tr>
<tr>
<td>rs12180315,</td>
<td>UMR</td>
<td>0/0.5</td>
</tr>
<tr>
<td>rs12180316,</td>
<td>UMR</td>
<td>0/0.5</td>
</tr>
<tr>
<td>rs12180317,</td>
<td>UMR</td>
<td>0/0.5</td>
</tr>
<tr>
<td>rs12180318,</td>
<td>UMR</td>
<td>0/0.5</td>
</tr>
<tr>
<td>rs12180319,</td>
<td>UMR</td>
<td>0/0.5</td>
</tr>
<tr>
<td>rs12180320,</td>
<td>UMR</td>
<td>0/0.5</td>
</tr>
<tr>
<td>rs12180321,</td>
<td>UMR</td>
<td>0/0.5</td>
</tr>
<tr>
<td>rs12180322,</td>
<td>UMR</td>
<td>0/0.5</td>
</tr>
<tr>
<td>rs12180323,</td>
<td>UMR</td>
<td>0/0.5</td>
</tr>
<tr>
<td>rs12180324,</td>
<td>UMR</td>
<td>0/0.5</td>
</tr>
<tr>
<td>rs12180325,</td>
<td>UMR</td>
<td>0/0.5</td>
</tr>
<tr>
<td>rs12180326,</td>
<td>UMR</td>
<td>0/0.5</td>
</tr>
<tr>
<td>rs12180327,</td>
<td>UMR</td>
<td>0/0.5</td>
</tr>
<tr>
<td>rs12180328,</td>
<td>UMR</td>
<td>0/0.5</td>
</tr>
<tr>
<td>rs12180329,</td>
<td>UMR</td>
<td>0/0.5</td>
</tr>
<tr>
<td>rs12180330,</td>
<td>UMR</td>
<td>0/0.5</td>
</tr>
<tr>
<td>rs12180331,</td>
<td>UMR</td>
<td>0/0.5</td>
</tr>
<tr>
<td>rs12180332,</td>
<td>UMR</td>
<td>0/0.5</td>
</tr>
<tr>
<td>rs12180333,</td>
<td>UMR</td>
<td>0/0.5</td>
</tr>
<tr>
<td>rs12180334,</td>
<td>UMR</td>
<td>0/0.5</td>
</tr>
<tr>
<td>rs12180335,</td>
<td>UMR</td>
<td>0/0.5</td>
</tr>
<tr>
<td>rs12180336,</td>
<td>UMR</td>
<td>0/0.5</td>
</tr>
<tr>
<td>rs12180337,</td>
<td>UMR</td>
<td>0/0.5</td>
</tr>
<tr>
<td>rs12180338,</td>
<td>UMR</td>
<td>0/0.5</td>
</tr>
<tr>
<td>rs12180339,</td>
<td>UMR</td>
<td>0/0.5</td>
</tr>
</tbody>
</table>
FV-EQA: error types

Evaluation of the FV1_09

Errors

– Reporting (e.g. LCT)
– Analytic
 ✤ by rare sequence variations, which result in non-standard genotyping (frequently specific for a genotyping method)
 ✤ Inadequate genotyping (e.g. CYP2D6)
FV-EQA: error types
Agenda

1. Introduction

2. Molecular genetic EQA schemes of the RfB

3. FV

4. Conclusion

5. Future Development
Conclusions

1. Increasing number of participants, analytes offered and analytes determined per laboratory
2. Changes in respect to the methods used for genotyping over the years
3. Identification of best-in-class methods
4. Reduction of the overall error rate by EQA scheme participation
5. Determination of inappropriate methods per genotype
1. Introduction

2. Molecular genetic EQA schemes of the RfB

3. FV

4. Conclusion

5. Future Development
Future development

Separation of FV into MG1 and MG2:

- Analytes being included: FVII R353Q, AT3 Cambridge, CYP3A5*3, TNFalpha 238 and 308, HLA-B*5701, CYP2B6, IL28B C/T polymorphism, IL6, CYP3A4*22

New EQAs

- EQA scheme for isolation of circulating nucleic acids
- EQA scheme for NGS
Questions?