SARS CoV-2 immunity from a clinical perspective

Corine Geurts van Kessel, MD PhD
Clinical virologist, Erasmus MC Rotterdam
c.geurtsvankessel@erasmusmc.nl
The use of SARS CoV-2 serology in clinical practice
The use of SARS CoV-2 serology in clinical practice

1. How good is SARS CoV-2 serology?

2. Use of IgG binding as correlate of protection in HC?
The use of SARS CoV-2 serology in clinical practice

1. How good is SARS CoV-2 serology?

2. Use of IgG binding as correlate of protection?
Validation of SARS CoV-2 serology...this was just the start

Okba et al. EID 2020
Validation of SARS CoV-2 serology: virus neutralization
Determining functionality of antibodies by virus neutralization

<table>
<thead>
<tr>
<th>titer</th>
<th>n</th>
<th>POS</th>
<th>NEG</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 1:20</td>
<td>31</td>
<td>27 (87%)</td>
<td>4 (13%)</td>
</tr>
<tr>
<td>1:20</td>
<td>10</td>
<td>4 (40%)</td>
<td>6 (60%)</td>
</tr>
<tr>
<td>1:40</td>
<td>7</td>
<td>2 (29%)</td>
<td>5 (71%)</td>
</tr>
<tr>
<td>1:80</td>
<td>2</td>
<td>0 (0%)</td>
<td>2 (100%)</td>
</tr>
<tr>
<td>1:160</td>
<td>4</td>
<td>0 (0%)</td>
<td>4 (100%)</td>
</tr>
<tr>
<td>1:320</td>
<td>11</td>
<td>0 (0%)</td>
<td>11 (100%)</td>
</tr>
<tr>
<td>1:640</td>
<td>9</td>
<td>0 (0%)</td>
<td>9 (100%)</td>
</tr>
<tr>
<td>1:1280</td>
<td>14</td>
<td>0 (0%)</td>
<td>14 (100%)</td>
</tr>
<tr>
<td>1:2560</td>
<td>16</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Probability <5% when PRNT is at least 1:80

Van Kampen et al, Nat Comm 2021
Timing
Severity of disease
Used antigen

Validation of SARS CoV-2 serology: assay comparison
Validation of SARS CoV-2 serology: assay comparison

DiaSorin Trimeric SARS CoV-2 IgG anti Spike

DiaSorin Trimeric CoV2 IgG : 7.8125-250 BAU/ml
Validation of SARS CoV-2 serology: current situation

Wild type virus

Liaison Trimeric S
Validation of SARS CoV-2 serology: current situation

- Wild type virus
- Delta
- Omicron

Liaison Trimeric S

S-specific IgG (BAU/ml)

- PRNT50 (titer)
- 10^1, 10^2, 10^3, 10^4, 10^5

Liaison Trimeric S

S-specific IgG (BAU/ml)

- PRNT50 - DELTA (titer)
- 10, 40, 160, 640, 2560, 10240, 40960

Liaison Trimeric S

S-specific IgG (BAU/ml)

- PRNT50 - OMICRON (titer)
- 10, 40, 160, 640, 2560, 10240, 40960
Single shot mRNA BNT162b is sufficient for vigorous immune responses in COVID-19 recovered individuals.

Polyclonal sera have 2-3 fold reduced functionality against VOC B.1.351.

- **CD4+ T cells** retain reactivity to VOC B.1.1.7 and B.1.351.

Determining functionality of antibodies by virus neutralization:

- Type of SARS CoV-2 variant
- Type of cells
- Incubation
- Live virus or pseudotyped
The use of SARS CoV-2 serology in clinical practice

1. How good is SARS CoV-2 serology?

2. Use of IgG binding as correlate of protection?
- **Correlates of protection:**
 Measurable signs that a person is immune, in the sense of being protected against becoming infected and/or developing disease

- **Antibodies**
 - SARS-CoV-2-specific antibodies bind to the virus, and can prevent infection of cells

- **T-cells**
 - SARS-CoV-2-specific T-cells recognize infected cells, leading to viral clearance
- **Correlates of protection:**
 Measurable signs that a person is immune, in the sense of being protected against becoming infected and/or developing disease

- **Antibodies**
 - SARS-CoV-2-specific antibodies bind to the virus, and can prevent infection of cells

- **T-cells**
 - SARS-CoV-2-specific T-cells recognize infected cells, leading to viral clearance
Interpretation of serological results

• Kinetics of antibody levels in time, stratified by vaccine platform

• Functionality of antibodies (binding versus neutralizing antibodies)

• Comparison of methods and standardization

• Patient characteristics: immune suppression/COVID treatment
Kinetics of binding antibody responses in healthy individuals

AZ Janssen Moderna Pfizer

GeurtsvanKessel et al. Science Imm. 2022
Determining functionality of antibodies by virus neutralization

A

- **ChAdOx-1 S (28d)**
 - GMT: 411, 365, 329, 20
 - PRNT50 (titer): 40960

- **Ad26.COV2.S (56d)**
 - GMT: 163, 140, 137, 15
 - PRNT50 (titer): 20480

- **mRNA-1273 (28d)**
 - GMT: 1997, 1808, 827, 58
 - PRNT50 (titer): 40960

- **BNT162b2 (28d)**
 - GMT: 802, 766, 301, 26
 - PRNT50 (titer): 40960

B

- **Convalescent (6m)**
 - GMT: 336, 400, 419, 42
 - PRNT50 (titer): 40960

C

- **WT delta beta omicron**
 - GMT: 27x, 11x, 34x

Geurtsvankessel et al. Science Imm. 2022
Booster response in healthy individuals

GeurtsvanKessel et al. Science Imm. 2022
Binding antibodies upon heterologous boosting of Janssen vaccinees

3 months after 1x Janssen

Sablerolles et al NEJM 2022
Binding antibodies upon heterologous boosting of Janssen vaccinees

3 months after 1x Janssen

28 days after boost

Sablerolles et al NEJM 2022
5 months upon booster vaccination

Sablerolles et al NEJM 2022
Breakthrough infections

Positivity Rate in vaccinated/unvaccinated people

Unvaccinated

Vaccinated
Immune responses in risk populations

- Department of Viroscience directly involved in multiple vaccination studies:
 - Healthy individuals
 - **HCW**: follow-up of healthcare workers vaccinated with different vaccines
 - **HCW boost**: follow-up of healthcare workers boosted with Pfizer
 - **SWITCH**: improving immune responses in Janssen vaccinated individuals
 - Immunocompromised patients
 - **RECOVAC**: immune responses after vaccination in kidney disease patients
 - **COVALENT**: immune responses after vaccination in lung transplant recipients
 - **VACOPID**: immune responses after vaccination in patients with primary immunodeficiencies
 - **VOICE**: immune responses after vaccination in cancer patients
 - **COVIH**: immune responses after vaccination in HIV patients
Serological cut off based on virus neutralization

Modernata vaccinated at 28 days post 2nd vaccination

- Optimal responder
- (sub) Optimal responder
- Low responder
- Non-responder

Cut-off for seropositivity

<table>
<thead>
<tr>
<th>S1 in BAU/ml (WHO/NIBSC units)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>10</td>
</tr>
<tr>
<td>100</td>
</tr>
<tr>
<td>1000</td>
</tr>
</tbody>
</table>

Study X
Comparative serology 28 days after Moderna vaccination

XLA: failure of B-lymphocyte precursors to mature into B-lymphocytes and ultimately plasma cells

Unpublished data
Comparative T cell immunology 28 days after Moderna (IGRA)

XLA: failure of B-lymphocyte precursors to mature into B-lymphocytes and ultimately plasma cells.
Vaccination-induced S-specific T-cells equally recognized VOC including Omicron
The use of serology in clinical practice

1. Use of IgG binding as correlate of protection in HC?

2. Use of IgG binding as correlate of protection in immune compromised patients

Requirements:

1. Standardised quantitative assay (calibrated with NIBSC)
2. Fixed timing → 28 days post vaccination?
3. Analysis based on type of vaccine
4. Definition of risk groups?
Acknowledgements

Viroscience, EMC
Daryl Geers
Marc Shamier
Susanne Bogers
Lennert Gommers
Nella van Nieuwkoop
Katharina Schmitz
Laurine Rijsbergen
Leanne van Leeuwen
Matthijs Raadsen
Faye de Wilt
Nisreen Okba
Eric van Gorp
Richard Molenkamp
Bas Ouode Munnink
Rik de Swart
Marion Koopmans
Bart Haagmans
Rory de Vries

All technicians of working group serology & virus culture, administration and virorunners

Occupational health, EMC
Herbert de Jager
ARBO swab unit & call centre

ICU, EMC
Henrik Endeman
Johannus van den Akker

Hospital Pharmacy, EMC
Roos Sablerolles
Melvin Lafeber
Wim Rietdijk
Birgit Koch
Heidi Lammers
Hugo van der Kuy

Molecular Genetics, EMC
Gijsbertus van der Horst
Ines Chaves

Internal Medicine, EMC
Virgil Dalm

Nephrology, EMC
Carla Baan
Marcia Kho
Reshwan Malahe

Marlies Reinders

UMC Groningen
Douwe Postma
Marieke van der Heiden
Debbby van Baarle
Bram Rutgers
Jan-Stephan Sanders
Lianne Messchendorp
Celine Imhof
Priya Vart
Ron Gansevoort
Coretta van Leer
Erik Verschuuren

LUMC
Leo Visser
Gert Jan Lammers
Hetty Jolink

RIVM
Gerco den Hartog
Gaby Smits
Nynke Rots
Rob van Binnendijk

Amsterdam UMC
Tom Caniels
Marit van Gils
Rogier Sanders
Abraham Goorhuis
Neeltje Kootstra
Frederike Bemelman
Sophie Frolke
Ester Remmerswaal
Godelieve de Bree

UMC Utrecht
Stefan Nierskens
Pauline Ellerbroek

Maastricht UMC
Judith Potjewijd

Radboud UMC
Dimitri Diavatopoulos
Wouter Mattheussens
Frank van de Veerdonk
Renate van der Molen
Luuk Hilbrands

La Jolla Institute, USA
Daniela Weiskopf
Alba Grifoni
Alessandro Sette