

SARS CoV-2 immunity from a clinical perspective

Corine Geurts van Kessel, MD PhD
Clinical virologist, Erasmus MC Rotterdam
c.geurtsvankessel@erasmusmc.nl

1. How good is SARS CoV-2 serology?

2. Use of IgG binding as correlate of protection in HC?

1. How good is SARS CoV-2 serology?

2. Use of IgG binding as correlate of protection?

Validation of SARS CoV-2 serology...this was just the start

Table 1.	Cohorts used to valid	late specificity and sensitivity of assays for	r SARS-	CoV-2*				
					No.	Postdiagnosis range		
Cohort	Country	Sample source		Infection	samples	or time		
3	The Netherlands	Healthy blood donors (negative cohort)		NA	45	NA		
	The Netherlands	Non-CoV respiratory infections†		Adenovirus	5	2–4 wk		
				Bocavirus	2	2–4 wk		
				Enterovirus	2	2–4 wk		
				HMPV	9	2–4 wk		
				Influenza A	13	2–4 wk		
				Influenza B	6	2–4 wk		
				Rhinovirus	9	2–4 wk		
				RSV	9	2–4 wk		
				PIV-1 PIV-3	4	2–4 wk 2–4 wk		
			Musen		4	2–4 wk 2–4 wk		
			wycop	lasma pneumoniae CMV	Ė	2–4 wk		
				ERV/	5	2-4 wk		
С	The Netherlands	HCoV infections†	α-					
			α-(β-(Α			В	
	The Netherlands South Korea	Zoonotic CoV infections†		47 Seve	ere			47
	Hong Kong, China	Zoonotic CoV infection†		0.001.0	, patient 1		8	
	France	RT-PCR confirmed SARS-CoV-2		3− Mild	, patient 2		OD 450	3-
	riance	infections	9	5	/			
		infections		S ELISA,	/		ELISA,	2-
				<u>s</u> _	/		~	- /
				표 1	/			
				ν.			S1	
				0]				0
					1 1		7	
_	_			0	5 10		35	0 5 10 15 20 25 30
ha e	t al. EID 2020)			Days afte	er symptom onset		Days after symptom onset

Validation of SARS CoV-2 serology: virus neutralization

Determining functionality of antibodies by virus neutralization

titer	n	POS	NEG			
< 1:20	31	27 (87%)	4 (13%)			
1:20	10	4 (40%)	6 (60%)			
1:40	7	2 (29%)	5 (71%)			
1:80	2	0 (0%)	2 (100%)			
1:160	4	0 (0%)	4 (100%)			
1:320	11	0 (0%)	11 (100%)			
1:640	9	0 (0%)	9 (100%)			
1:1280	14	0 (0%)	14 (100%)			
1:2560	16 Probability <5% when					
	PRNT is at least 1:80					

Van Kampen et al, Nat Comm 2021

Validation of SARS CoV-2 serology: assay comparison

Timing
Severity of disease
Used antigen

Validation of SARS CoV-2 serology: assay comparison

DiaSorin Trimeric SARS CoV-2 IgG anti Spike

DiaSorin TrimericS CoV2 IgG: 7.8125-250 BAU/ml

Validation of SARS CoV-2 serology: current situation

S-specific IgG (BAU/ml)

Liaison Trimeric S

Validation of SARS CoV-2 serology: current situation

Determining functionality of antibodies by virus neutralization

1. How good is SARS CoV-2 serology?

2. Use of IgG binding as correlate of protection?

Correlates of protection:

Measurable signs that a person is immune, in the sense of being protected against becoming infected and/or developing disease

Antibodies

SARS-CoV-2-specific antibodies bind to the virus, and can prevent infection of cells

T-cells

SARS-CoV-2-specific T-cells recognize infected cells, leading to viral clearance

Correlates of protection:

Measurable signs that a person is immune, in the sense of being protected against becoming infected and/or developing disease

Antibodies

SARS-CoV-2-specific antibodies bind to the virus, and can prevent infection of cells

T-cells

SARS-CoV-2-specific T-cells recognize infected cells, leading to viral clearance

Interpretation of serological results

- Kinetics of antibody levels in time, stratified by vaccine platform
- Functionality of antibodies (binding versus neutralizing antibodies)
- Comparison of methods and standardization
- Patient characteristics : immune supression/ COVID treatment

Kinetics of binding antibody responses in healthy individuals

Determining functionality of antibodies by virus neutralization

Booster response in healthy individuals

Binding antibodies upon heterologous boosting of Janssen vaccinees

Binding antibodies upon heterologous boosting of Janssen vaccinees

5 months upon booster vaccination

Breakthrough infections

Immune responses in risk populations

- Department of Viroscience directly involved in multiple vaccination studies:
 - Healthy individuals

- **HCW**: follow-up of healthcare workers vaccinated with different vaccines
- **HCW boost**: follow-up of healthcare workers boosted with Pfizer
- **SWITCH**: improving immune responses in Janssen vaccinated individuals
- Immunocompromised patients
 - **RECOVAC**: immune responses after vaccination in kidney disease patients
 - **COVALENT**: immune responses after vaccination in lung transplant recipients
 - VACOPID: immune responses after vaccination in patients with primary immunodeficiencies
 - **VOICE**: immune responses after vaccination in cancer patients
 - **COVIH**: immune responses after vaccination in HIV patients

Serological cut off based on virus neutralization

Moderna vaccinated at 28 days post 2nd vaccination

Comparative serology 28 days after Moderna vaccination

XLA: failure of B-lymphocyte precursors to mature into B-lymphocytesinfo-icon and ultimately plasma cells

Comparative T cell immunology 28 days after Moderna (IGRA)

XLA: failure of B-lymphocyte precursors to mature into B-lymphocytesinfo-icon and ultimately plasma cells

Vaccination-induced S-specific T-cells equally recognized VOC including Omicron

The use of serology in clinical practice

- 1. Use of IgG binding as correlate of protection in HC?
- 2. Use of IgG binding as correlate of protection in immune compromised patients

Requirements:

- 1. Standardised quantitative assay (calibrated with NIBSC)
- 2. Fixed timing → 28 days post vaccination?
- 3. Analysis based on type of vaccine
- 4. Definition of risk groups?

Acknowledgements

Viroscience, EMC

Darvl Geers Marc Shamier Susanne Bogers **Lennert Gommers** Nella van Nieuwkoop Katharina Schmitz Laurine Rijsbergen Leanne van Leeuwen Matthijs Raadsen Faye de Wilt Nisreen Okba Eric van Gorp Richard Molenkamp Bas Oude Munnink Rik de Swart **Marion Koopmans**

Bart Haagmans

Rory de Vries

All technicians of working group serology & virus culture, administration and Rogier Hoek virorunners

Occupational health, EMC

Herbert de Jager ARBO swab unit& call centre

ICU, EMC

Henrik Endeman Johannus van den Akker

Hospital Pharmacy, EMC

Roos Sablerolles Melvin Lafeber Wim Rietdijk Birgit Koch Heidi Lammers Hugo van der Kuy

Molecular Genetics, EMC

Gijsbertus van der Horst **Ines Chaves**

Pulmonology, EMC

Nienke Wijbenga

Internal Medicine, EMC Virgil Dalm

Nephrology, EMC Carla Baan

Marcia Kho Reshwan Malahe **Marlies Reinders**

UMC Groningen

Douwe Postma Marieke van der Heiden **Debby van Baarle** Bram Rutgers Jan-Stephan Sanders Lianne Messchendorp Celine Imhof Priva Vart

Ron Gansevoort Coretta van Leer Erik Verschuuren

LUMC

Leo Visser Gert Jan Lammers Hetty Jolink

RIVM

Gerco den Hartog **Gaby Smits** Nvnke Rots Rob van Binnendijk

Amsterdam UMC

Tom Caniels **Marit van Gils** Rogier Sanders Abraham Goorhuis Neeltie Kootstra Frederike Bemelman Sophie Frolke Ester Remmerswaal **Godelieve de Bree**

UMC Utrect

Stefan Nierskens **Pauline Ellerbroek**

Maastricht UMC

Judith Potjewijd

Radboud UMC

Dimitri Diavatopoulos Wouter Mattheussens Frank van de Veerdonk Renate van der Molen **Luuk Hillbrands**

La Jolla Institute, USA

Daniela Weiskopf Alba Grifoni **Alessandro Sette**

